题意:给出一个200 * 50000的像素点矩阵,执行50000次操作,每次把一个矩形/圆形/菱形/三角形内的像素点涂成指定颜色,问最后每种颜色的数量。
分析:乍一看,很像用线段树成段更新写,虽然复杂度有点大,但是也想不到其他的方法.这题可以巧妙地运用并查集来涂色.离线,从最后一个倒过来涂色,保证能涂上去的一定不会被覆盖,每次扫描一行,将一条线上的点都合并到右端点.
#includeusing namespace std;#define lson l, mid, o << 1#define rson mid + 1, r, o << 1 | 1typedef long long LL;const int N = 5e4 + 2;const int INF = 0x3f3f3f3f;struct DSU { int rt[N]; void clear(int n) { fill (rt, rt+n, -1); } int Find(int x) { return rt[x] == -1 ? x : rt[x] = Find (rt[x]); } void Union(int x, int y) { rt[x] = y; }}dsu;struct Point { char str[20]; int xc, yc, a, b, c;}p[N];bool vis[N];int ans[10];int n, m, q;int squ(int x) { return x * x;}int cal(int x, int y) { x = abs (x); y = abs (y); return squ (x) + squ (y);}int main(void) { //好题 while (scanf ("%d%d%d", &n, &m, &q) == 3) { memset (ans, 0, sizeof (ans)); for (int i=0; i =0; --j) { int left = 0, right = 0; if (p[j].str[0] == 'C') { if (squ (i - p[j].xc) > squ (p[j].a)) continue; int tmp = (int) sqrt (1.0 * (squ (p[j].a) - squ (i - p[j].xc))); left = p[j].yc - tmp; right = p[j].yc + tmp; } else if (p[j].str[0] == 'D') { if (i < p[j].xc - p[j].a || i > p[j].xc + p[j].a) continue; left = p[j].yc - p[j].a + abs (i - p[j].xc); right = p[j].yc + p[j].a - abs (i - p[j].xc); } else if (p[j].str[0] == 'R') { if (i < p[j].xc || i > p[j].xc + p[j].a - 1) continue; left = p[j].yc; right = p[j].yc + p[j].b - 1; } else if (p[j].str[0] == 'T') { if (i < p[j].xc || i > p[j].xc + (p[j].a + 1) / 2 - 1) continue; left = p[j].yc - p[j].a / 2 + (i - p[j].xc); right = p[j].yc + p[j].a / 2 - (i - p[j].xc); } if (left < 0) left = 0; if (right >= m) right = m - 1; int fa, fb = dsu.Find (right); for (int k=left; k<=right; k=fa+1) { //paint a line fa = dsu.Find (k); if (!vis[fa]) { ans[p[j].c]++; vis[fa] = true; } if (fa != fb) dsu.Union (fa, fb); } } } for (int i=1; i<=9; ++i) { printf ("%d%c", ans[i], i == 9 ? '\n' : ' '); } } return 0;}